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Temporal segmentation of the stochastic oscillator neural network
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We propose a stochastic oscillator neural network model of the Hopfield-type memory for pattern segmen-
tation tasks exploiting temporal dynamics of stochastic nonlinear oscillators. The nonlinear oscillators in the
model are driven by subthreshold periodic force and noise. For an input pattern which is an overlapped
superposition of several stored patterns, it is shown that the proposed model network is capable of segmenting
out each pattern one after another as synchronous firings of a group of neurons. A systematic study of the
dependence on the model parameters shows that the temporal segmentation attains its optimal performance at
an intermediate noise intensity, which is reminiscent of the stochastic resonance observed in the coupled
oscillator networks. It is also shown that the inhibitory coupling between oscillator groups representing dif-
ferent patterns plays an important role in that it enhances both the firing rate and the intergroup desynchrony
that are essential requirements for the optimal performance of the temporal segmentation.
[S1063-651%98)06808-1

PACS numbefs): 84.35+i, 02.50.Ey, 05.40tj, 82.40.B;

I. INTRODUCTION was constructed using oscillator units, each of which is a
feedback loop of the excitatory and inhibitory cells. These
Recently, electrophysiological experiments on the visuamodels have been shown to exhibit the capability to retrieve
cortex of a cat have revealed the presence of oscillatorgomponent patterns for a small number of the superimposed
rhythms in the measurement of the local field potential uporinput patterns, which is achieved in a rather brief period. As
the presentation of moving visual stim{ili,2]. The observa- considered in Ref.14], however, the deterministic oscillator
tion of a 40—60-Hz synchronous oscillation among neuronsnodels previously employed have an inherent limitation in
that are widely separated over the visual cortex has suphe capacity of the temporal segmentation. That is, as the
ported the idea that temporal correlation among the neuronsumber of the superimposed patterns increases, the network
is the working mechanism for the feature bind{i®4]. The often falls into partially segmented states that correspond to
processes of perception—like the figure-background separaccurrences of the fusion of several component patterns. The
tion, the object recognition, and the separation of distinceffect of noisy inputs on segmentation was also examined,
objects—are all based on the feature binding mechanisnand it was reported that noise in some cases can enhance the
Recent studies on the functional role of the nervous systemerformancd 15], even though it is not sufficient to remove
have concentrated on the dynamic behavior of the nervouthe basic limitation.
system[4-6]. On the other hand, it was recently observed that noise can
Motivated by physiological evidence of synchronous os-play a supportive role, counterintuitively, in detecting weak
cillations as the means of the feature binding, a new apsignals. That is, when a weak periodic force is applied to a
proach using the associative oscillator neural network hasonlinear system with a threshold, the signal-to-noise ratio
been proposed to resolve the so-called superposition catashows an optimal peak at an intermediate level of the noise
trophe problenj7]. That is, when an input corresponding to intensity. This phenomenon has been referred to as “stochas-
a superposition of several stored patterns is presented fdic resonance” in the literaturel6]. Since its introduction in
conventional associative neural networks whose performancexplaining the periodicity of the Earth’s Ice Aggs7], sto-
is based on fixed-point dynamig8,9], it is viewed as a new chastic resonance has been studied in a variety of contexts
pattern that has not been stored. Therefore, the network iscluding ring laser$18], the electronic circuif19-21, and
not able to retrieve information for the hidden componentsensory neuronal systenj22-24. Recently, it was also
patterns. Meanwhile, in the associative oscillator networlkdemonstrated through a psychophysical experiment that sto-
each component pattern pops out as a synchronous firing ofdastic resonance can be used as a quantitative measure of
subgroup of neurons, and the different patterns are distinthe efficiency with which the visual system processes noisy
guished by the different temporal activities of the subgroupsinformation|[25].
which is the main idea of the temporal segmentation scheme. In the present work, motivated by observations of the ac-
Therefore, the oscillatory network is shown to be capable ofive role of noise, we propose an oscillator neural network
avoiding the superposition catastrophe problem. Since themodel of Hopfield-type memory for pattern segmentation
various models using the oscillatory neural networks haveasks which exploit temporal dynamics of stochastic nonlin-
been attempted for the temporal segmentation tasks. ear oscillators; the stochastic oscillator neural network pro-
In Refs.[10,11], the dynamic threshold in the Hopfield posed will hereafter be abbreviated as STONN. The pro-
neural network was incorporated to obtain an oscillatoryposed model is different from previous oscillator network
neural network, and in Ref$12,13 an oscillator network models[10-12,14 in that the nonlinear oscillators of the
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network are driven by the subthreshold periodic force and 2 ! '
noise, which leads to a segmentation mechanism different ‘
from the previous attempts. That is, the segmentation task is
carried out in the STONN when each pattern is selected to |
fall into the firing state one after another by noise, while the 1 F .
other patterns not selected at a moment remain in the resting [ ‘
state. In Refs[10-12,14, all pattern activities maintain os-
cillatory states with phase shifts among them, and such a

train of the staggered oscillations is regarded as the desired Xo Xe Xm
segmentation. We expect that the proposed model, incorpo- L BN ' | |
rating an active role of noise, may provide an alternative

approach of constructing associative memories for the tem- 5 ‘1 (‘) 1 5

poral segmentation tasks.

In the following it is shown that the proposed model net-
work has the capability of temporal segmentation. A system-  FIG. 1. Double well potential of the oscillator in E€L).
atic study of the dependence of the performance on the
model parameters shows that the performance of the prayf the neuron. That is, the neuron is regarded as being in the
posed model attains its optimal value at an intermediate levekesting state wher<0, and in the firing state whex>0.
of the noise intensity, which is reminiscent of the stochastiqror a real neuron the firing state usually lasts for only a brief
resonance observed in the coupled oscillator netwf28s  period, and is followed by the deactivation process, restoring
This paper is organized as follows. In Sec. Il, we introduce ahe membrane potential back to the resting state. This
stochastic one-dimensional nonlinear oscillator as a simplimechanism of deactivation is introduced in our model by
fied neuron model. In Sec. Il, the effects of noise as well aolding the activation variable for a brief time delay, and
coupling between oscillations are examined in detail with thehen resetting it toc=x, wheneverx reaches a prescribed
simplest example of two coupled oscillators. It is shown thayalue x,,; x,, andx, indicated in the figure can be chosen
the inhibitory coupling between oscillators plays a distinctivearhitrarily, since their precise values do not lead to an appre-
role which turns out to be very essential for the optimalgjgple change in the results. We ggt=0.9 andx,= — 2.0 in
performance of the proposed network model. The STONN ighe present work.
constructed, using the Hopfield-type memory, in Sec. IV. A periodic driving forcel (t)=14sin(wgt), With wy=0.1,
The performance of the network for the memory retrieval isrepresents an input stimulus. When the strength of stimulus
also examined. In Sec. V, the performance of the proposef is |arger than the threshold valug,~0.42, the model
network for the temporal segmentation is examined for varineyron exhibits sustained periodic firings. When the input
ous ranges of the noise intensity as well as the couplingtimulus is weak below the threshold valuecannot reach
strength, and explanations for such behavior of the networke firing state and just wobbles around the resting state. In
are attempted based on the observations from the twghe present work, if not specified, the input stimulus is as-
coupled oscillators. Finally, in Sec. VI we make conclusionsg;,med to be in the subthreshold regirgs 0.36, so that it

with discussion. does not excite the neuron by itself. However, in the pres-
ence of noise, as added in the last term of @g. the model
Il. STOCHASTIC NONLINEAR OSCILLATOR neuron can be driven to the firing regime even with the sub-

o . . . threshold stimuli, which is the main phenomenon exploited
In the presence of a sufficiently strong sinusoidal stimusp, e present workD is the noise intensity, and the random
lus, a neuron can be excited from the stationary resting statgp;te noise¢ is defined as
to the oscillatory firing state. In this paper such an activation
of a neuron from the resting state to the firing state is de- (E1))=0, (EOEL))=6 . 2)

scribed by a one-dimensional overdamped nonlinear oscilla-
tor, which can be regarded as a further simplified version of However, the firing events are only rare when the noise
the more realistic models such as the Hodgkin-HUX®¥l,  intensityD is rather small. The firing occurs more frequently
Fitzhugh-Nagumo([28,29, or Morris-Lecar [30] neuron g the fevel of the noise intensity becomes higher. When the
models. The simplification to the one-dimensional oscillator,,ise |evel is too high, however, the occurrence of the firings
model greatly reduces the computational complexity of th,ecomes noisy: that is, most firings become incoherent with
coupled n_eural oscnlators s_ystem._ ) the driving forcel (t). Therefore, the coherent firing of the
Dynamics of the activation variable representing the o ron is a cooperative behavior between noise and the driv-
membrane voltage of a neuron is governed by the ordinary,, torce. That is, whenever the periodic driving force is at

differential equation its peak value, the neuron has a chance to fire through the
additional forcing provided by noise. Figure 2 shows the
d_X: _ du(x) +1(t)+ 2D ¢ 1) power spectral density(w) of the output signak(t), which
dt dx ’ displaysé peaks at the frequenay, of the driving forcing

and also at its harmonics. The stochastic resonance is mani-
where the potential is given dd(x)=—1/2x>+1/4x*. As  fested by the signal-to-noise rati®NR) of x(t), which is
shown in Fig. 1, the potential has a thresholatat 0, which  the logarithm of the ratio of the power spectral density
denotes the crossover from the resting state to the firing stafé(w,) to the background noise intensitg8]. The inset of
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FIG. 2. Power spectral densif§(w) for x(t) at D=0.1. The
inset shows the SNR as a function Df

the figure shows the SNR as a function of the noise intensity /ﬁJ M

D. As shown in the figure, the SNR peak occurs at the noise A\N\NW\]U\N\ v’WWU WWWNWW
intensity D=Dy~0.1. The appearance of the SNR peak at
an intermediate noise intensity is a universal behavior of

nonlinear systems, with the threshold dynamics like the one
of the present neuron modgl6,17,19-24 WWJW

lll. TWO COUPLED OSCILLATORS

Before examiing the more complex benavior of the os- ||| HLAMLLELARAMALRRAARAARLA
o coupled sotnastc osllators. The systam s deserived 11110111 U VI VTIVEV Y

by the following coupled differential equations:

dx dU(xy) ©
d_tlz_ dxll +1() + V2D ér+ y1(X—Xy),
()

FIG. 3. Temporal activities of two coupled oscillators. The com-

mon sinusoidal forcing is depicted at the bottom of the plots. The
dx; _ dU(xz) | \/ﬁ long vertical bar across the graphs denotes the moment when the
dat dx, O+ €271 y2(X1=X2), coupling is turned on(a) The excitatory coupling ¥=0.3, D
=0.02).(b) The inhibitory coupling casey= —0.3,D=0.004).

where the white noise§; and &, of each oscillator are un-
correlated, that ig&,(t) €»(t"))=0. The input currents, (t) oscillations, whereas the inhibitory coupling induces desyn-
andl,(t) are set to be identical. The coupling constapfs chrony. One may also notice a certain amount of synchrony
andy, can be either positive or negative; the attractive forcepresent even before the coupling is turned on, which is only
(y>0) and the repulsive forcey<0) typically lead to an due to the common driving force.
excitatory and an inhibitory coupling, respectively. To un- To see the firing response of the coupled oscillators to
derstand the cooperative behavior between two oscillationsoise, the SNR for each coupling case has been estimated.
under couplings of different nature, in the following we con- The SNR varies depending on the coupling strength as well
sider two cases(a) the mutual excitatory coupling;=7y,  as the noise intensity, as shown in Fig. 4. For the excitatory
=y>0, and(b) the mutual inhibitory couplingy;=y,=vy coupling case, as shown in Fig(a#, the SNR at weaker
<Q0. noise intensities[)<D) is reduced, whereas it is enhanced

In Figs. 3, temporal activities of the two oscillators are at larger noise intensitiesD(>>D,) when compared to the
shown for each case of coupling. In each figure, the firingsingle uncoupled oscillator case. This is due to the attractive
events of the oscillators are depicted in the upper two plotsiorce between two phases of oscillations, originating from
The sinusoidal graph at the bottom denotes the common pdhe nature of the excitatory coupling. Enhancement of the
riodic driving force. The long vertical line across the graphsSNR due to the excitatory coupling was previously reported
denotes the moment when the coupling is turned on. As onfor coupled oscillator systeni26,31,33.
can see from these figures, two oscillations are strongly syn- The mechanism for the coupling dependence of the SNR
chronized for the excitatory coupling caféig. 3@], and can be viewed at the level of the neuronal activity as follows.
strongly desynchronized for the inhibitory coupling caseThe excitatory coupling tends to reduce the phase difference
[Fig. 3(b)], as soon as the coupling is turned on. That is, theof the two oscillators. At a weak noise intensity, both oscil-
excitatory coupling typically induces synchrony between twolators have less chance of firings, and hence it is more likely
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with excitatory coupling a small deviation of two oscillating
phases tends to decrease, and the effective coupling between
two oscillators becomes smaller as a result. Meanwhile, the
deviation tends to increase for the inhibitory coupling case
due to the repulsive force and, therefore, the effective cou-
1 pling becomes larger. The increase of the effective coupling
strength for the inhibitory coupling case can thus lead to a
nontrivial result in the coupled oscillations, unlike for the
excitatory coupling case.
Besides the noise and the driving force, the effective force
7 between the coupled oscillations comes from the combined
effect of the potential(x) and the coupling. Near the left
minimum of the potential(the resting stajethe potential
1 gradient tends to synchronize the oscillations, while it tends
to desynchronize the oscillations near the threshold because
of the reversed curvature of the potential. Therefore, in a
B simplified picture, one may describe a typical firing of oscil-
lators with inhibitory coupling by the following three steps:
N (1) a periodic approach of both oscillators to the threshold
driven by input force(2) a small deviation in phase due to
noise, and thert3) a mutual repulsion of the phases due to
T the combined effect of the potential gradient and the inhibi-
tory coupling. In stef2), the order of the phases is randomly
given by noise, and the oscillator of the advanced phase will
be finally led to fire by the repulsive force of stdf),
whereas the other oscillator of the lagged phase is pushed
T back to the resting state. A more detailed analysis of the
combined effect of the potential and the coupling will be
] given elsewherg33].
-4 -3 -2 -1 0 1 The observation of the enhanced SNR at the weak noise
(b) log (D) intensity due to the inhibitory coupling is very important for
the purpose of the segmentation performance of the oscilla-
FIG. 4. SNR for two coupled oscillators with respect to the tor network, since this implies an increased average firing
noise intensity for various magnitudes of the coupling stren@h:  rate of neurons, as will be shown in the following sections.
the excitatory coupling antb) the inhibitory coupling cases. However, since our purpose for using the coupled oscilla-
&‘ gns is their temporal activities, the desired performance of
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that they are in a resting state. Suppose now that the phase
one oscillator manages to get closer to the threshold and
ready to fire. The oscillator would fire only if a sufficiently
strong noise kick occurs on it. However, the amount of noise
should be larger than the uncoupled oscillator case, since !
oscillator, now coupled, should overcome the attraction from

e oscillator network should also rely on the degree of phase
correlations of coupled oscillators as well.
The degree of coherency between two oscillations is mea-
red by cross correlations defined as

the other oscillator at the resting state in addition to the pull- i

ing force by the nonlinear potentidl(x). Therefore, it is N Z 1(KT)A\b(KT),

more likely that the firing of the oscillator is suppressed and, (4)
consequently, the firing rate is reduced compared to the 1 %=

single oscillator case. Furthermore, this effect is evidently Ca= N ¢ 2 by(kT)@®by(kT)

enhanced as the coupling becomes stronger. On the other

hand, when the noise intensity is large> D), both oscil-

lators have more chance to be in the firing state. Even whewhereT is the period of the input forcing, =27/ wg, andb;
one oscillator is in the resting state, the other oscillator in thés the binary representation of the activation variables 0
firing state attracts the oscillator and helps firing. Consefor x<0 andb;=1 for x>0. b;(kT) is measured at thkth
guently, the SNR will be enhanced, and this effect also bepeak of the input forcing within the time window of finite
comes enhanced as the coupling is stronger. width & centered around the peak. The operatiénand @

A quite different mechanism applies to the inhibitory cou- denote the binary operations “AND” and “Exclusive OR,”
pling case, since the nature of the coupling now introduces gespectively. The degree of correlation is estimated using
repulsive force instead of an attractive fofeee Fig. 4b)]. both measures, since either measure alone does not properly
It is noticeable that the change of the SNR for the inhibitoryestimate two kinds of correlations of interest, synchrony and
coupling case is much more prominent, especially in thedesynchrony, simultaneously over a wide range of the noise
weak noise regime, compared to the excitatory couplingntensity. The cross correlatio@ measures the degree of
case. This results mainly from the nature of inhibitory cou-synchrony, i.e., the occurrences of synchronous firings of
pling that enhances the coupling strength effectively. That istwo oscillators at the peaks of the input forcing, while the
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9 SNR curve. It is also observed that the peak shifts to a lower
level of noise intensity as the coupling strength increases,
which implies the important role of the inhibitory coupling at
the low level of the noise intensity.

As the noise intensity becomes too strong beybrdthe
1 magnitude of the cross correlations becomes small, since the
firing of each oscillator is now dominated by the uncorre-
lated noisest; and &,, and thereby the firings of the two
oscillators start to be uncorrelated. In fact, this behavior at
the high noise level is not reflected properly by the present
definition of the cross correlatiofFig. 5a)], which is sup-
posed to be saturated at the higher level of noise intensity.
] That is, as the noise intensity increases, the oscillators tend
1 to fire at most of the input forcing periods, and this will in
turn make the cross correlation saturate even though firings
in the whole time range are uncorrelated on average. How-
ever, this should not lead to confusion, since this behavior
o can be correctly recognized from the SNR data. Therefore, to
e understand more properly the cooperative behavior of the
— coupled oscillations, it is necessary to examine both mea-
o sures of the SNR and the cross correlations.
o In summary, the excitatorginhibitory) coupling induces
synchrony(desynchronybetween stochastic nonlinear oscil-
g lators. But, unlike the deterministic case, the degree of cor-
relation depends on the noise intensity as well as on the
coupling strength. Also, the firing rate of the coupled oscil-
lator, the SNR, shows a strong dependence on both quanti-
ties. In particular, the effect of the inhibitory coupling is
. prominent at the lower level of noise intensity. As will be
seen in the following sections, this feature of the inhibitory
coupling plays an important role in accomplishing the de-

. _— ir mporal mentation.
FIG. 5. Cross correlations between two coupled oscnlatlonsS ed temporal segmentatio

with respect to the noise intensity for various magnitudes of the
coupling strength:(a) the cross correlatiol© and (b) the cross IV. STOCHASTIC OSCILLATOR NEURAL NETWORK
anticorrelationCp .
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In Sec. Ill, we studied the various effects of noise and
ecoupling on the stochastic nonlinear oscillators. In this sec-
Hion, using these oscillators, we construct an oscillator neural
jnetwork of the Hopfield-type associative memd8j, and
%so examine its performance for the memory association

efore we proceed to apply it to the temporal segmentation

anticorrelationC, measures the degree of desynchrony. Not
that two measures are independent by definition, and that t
proposed definitions are different from the conventional
ones. However, it is expected that these measures are m

natural for the present purpose in that they measure correlg- . ;
tions of the firing events only at the input forcing periods. Ag'asks. The Hopfield-type neural network stori@gpatterns

will be seen in the following sections, the desired temporalgp' p=1~Q, is described by the coupled differential equa-

segmentation is also performed naturally at the input forcing'©"S
periods in the parameter range of present interest.

Figure 5 shows that correlations between the two oscilla- %: _ d_U+ \/ﬁf-+|-(t)+LE W, (X —X;)
tions vary depending on the noise intensity as well as the dt dx; b N—14 U T
coupling strength. When the noise intensity is sufficiently 5)
weak, the oscillators hardly fire, and hence the correlations ij=1,... N,
are almost zero. As the noise intensity increases, firings start

to occur and the magnitudes of both correlations rise due tqhereN is the number of the oscillator nodes, an is the
the coupling between two oscillations. Note that the effect ofyeight of coupling between noddésand j. The coupling
the inhibitory coupling is more prominent compared to thatconfiguration is given via Hebb's rulg4],

of the excitatory coupling, especially in the weak noise re-

gime. The inhibitory coupling induces strong anticorrelation Q

at a much lower level of the noise intensity. This is, as WiJZE (! _ap)(glp_ap), (6)
pointed out above, due to the fact that repulsion of oscilla- p=1

tions originating from the inhibitory coupling becomes en-

larged at the weak noise level belddy,. Note also that the whereaP=({P), averaged over all nodes. Note that under the
anticorrelation attains its maximal value at a noise intensityrule given by Eq(6) the intragroup coupling between nodes
which is much lower compared to the peak position of thewithin a group representing a same pattern is given as exci-
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FIG. 6. () Stored patterns for the associative memaby.Test input patterns that are incomplete but close to the stored p&tevith
one wrong node: either an additional firing nodg ) or a missing nodeA5). (c) Trial input pattern which is an overlapped superposition
of all stored patterns. The filled box denotes the firing node and the empty box denotes the resting node.

tatory and the intergroup coupling between nodes belongingapidly as the coupling strength increases. Such a tendency is
to different patterns is given as inhibitory. expected because an increment of the coupling stremgth

For the purpose of demonstration, we consider a simpléncreases both the excitatory coupling and the inhibitory cou-
network example consisting of44 oscillator nodes. There- pling between nodes. And, in turn, the increase of the exci-
fore, patterns(® are represented by>44 binary data. An tatory coupling will enhance synchrony among nodes be-
input pattern is given to the network by applying the sub-longing to the same patterns, and the increased inhibition
threshold periodic forcd(t) to the corresponding nodes. will enhance desynchrony between nodes belonging to dif-
Four patterns shown in Fig.(#& are stored in the memory. ferent patterns.

The filled box denotes a firing nod&), and the empty box From Fig. 8 one may also note that a stronger coupling is
denotes a node in the resting sté@gin the figure. Note that required in retrieving the stored pattern for the wrong input
the nodes are labeled using numbers 1,2,16. with missing firing nodesA,) than for the one with exces-

To examine the association performance of the networksive firing nodes ;). For patternA,, the suppression of the
we use two test patters; andA, shown in Fig. €b), which  excessive nod¢l16} is achieved mainly through the inhibi-
coincide with the stored patters; except for one wrong tory coupling with the firing node$1,2,3,4. For A,, how-
node. As an associative memory we expect the network to bever, the firing of the missing nodgl} is encouraged by
able to retrieve the correct patte®p. In the absence of cou- excitatory coupling with node$1,2,3}. As pointed out in
pling the oscillator nodes receiving inputs fire just in an un-Sec. lll, the inhibitory coupling has a mechanism that leads
correlated fashion as depicted in Fig. 7 during the earlieto larger effective coupling. This is why the association can
time lapse. However, as the coupling is turned on at thée carried out at a lower coupling strength for, where the
moment denoted by a long vertical line in the figure, all fourinhibitory coupling plays its role.
nodes belonging t&, fire in a synchronized fashion, which

is due to both the ex_citatqry inFragroup coupIing between the V. TEMPORAL SEGMENTATION
nodes ofS; and the inhibitory intergroup coupling between
nodes ofS; and the others. The retrieval &; is evidently Now, using the STONN proposed in Sec. IV, we examine

successful except for some occasional failures on the excethe performance of the network for the task of the temporal
sive wrong nodgFig. 7(a)]. One may also note that retrieval segmentation. That is, the segmentation into the constituent
is achieved within only a few periods of the driving force, so patterns is attempted for the input pattévry, as shown in
that the transient period is almost unnoticeable. The occurFig. 6(c), which is an overlapped superposition of the four
rence of the wrong recalls originates from the stochastic nastored pattern§;—S,.
ture of the network, and the frequency of the wrong recalls In Fig. 9, the temporal behavior of the network is pre-
varies depending both on the coupling strength and the noisgented. The plot shows that nodds2,3,4 are selected first,
intensity. and fire synchronously at the first peak time of the driving
The association rati®,.,, measures the association per- force, which leads to a successful segmentation of paBgrn
formance of the network, and is defined as the averaged ratiét the next peak, patter, is now segmented. One may
of the number of the successful memory retrieval to the numnote, however, that the network selects and segments out the
ber of the input peaks. Figure 8 shows the association ratioomponent patterns one after another in a random way as it
as a function of the coupling strength for both input patternsevolves its temporal dynamics. The figure also shows that
A; andA,. As can be seen from the figure, the ratio increaseshe identification of a pattern may not be always successful,
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FIG. 7. Associative memory retrieval against the wrong input

patterns:(a) for A; with one additional wrong nod¢l16} at y
=0.9 andD =0.006, andb) for A, with one missing nod¢4} at

v=3.0 andD=0.006. The long vertical line across the graphs de-
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FIG. 9. Temporal segmentation of the oscillatory network for
the patternM, which is an overlapped superposition of all stored
patternsS;~S,. The parameters are chosen for the presentation
purpose:y=2.0 andD =0.001. The firing activities of all 16 nodes
are depicted with an increasing order from the top together with the
common sinusoidal forcing at the bottom. The instances of the suc-
cessful segmentation are denoted®yand the occasional failures
by X at the bottom of the plot.

nodes as an incomplete segmentationSgfwith noise at
nodes{2,4}. In fact, nodes{2,4} belong to patterr§;, and
these nodes are coupled with the nodeSgpfia the inhibi-
tory intergroup coupling since they belong to the different
patterns. Therefore, it is likely that firing of nodg,4} will

be suppressed by the firing of nodgs5,9,13 as the input
forcing evolves. At the next peak of forcing, as one can

notes the moment when the coupling is turned on. Only the relevan‘?bserve from the figure, the network now sele®fsuccess-

nodes{1,2,3,4,16 are shown.

as such instances are denoted by the syitbal the bottom

of the figure. For example, at the fourth peak of the forcing,
nodes{1,2,4,5,9,138 fire, which does not coincide with any
stored patterns. One may regard the pattern of those firin

1 [ T T T T ]
A1+
AZ—'—
0.8} 4
$ 0.6 -
e
0.4} |
0.2} i
0 Lo—oe®e — ; e -
0 1 2 3 4

FIG. 8. Association ratidR,, as a function of the coupling
strength at a fixed noise intensiy=0.006 for the input patterns
A; andA, of Fig. 6(b).

fully, and only nodes{1,5,9,13 fire synchronously. How-
ever, such a decision for the next selection following an in-
complete segmentation is not made in a deterministic way,
again due to the random nature of the pattern selection; for
example, see the segmentation failure at the tenth peak fol-
lowed by S; selection.

9 The mechanism of the temporal segmentation with the
random nature of the pattern selection is explained in the
following. For the input patteriv 4, those neurons receiving
zero input remain in the resting state. Meanwhile, the neu-
rons receiving nonzero input signal are driven by a sub-
threshold periodic force, so that they are periodically driven
together close to the firing threshold. Near the threshold the
uncorrelated noises applied to the neurons generate small
deviations in the phase of the neurons. Then a leading group
of neurons of advanced phases is selected by chance and,
according to the procedure explained in Sec. Il for an in-
hibitorily coupled system, the effective repulsive force near
the threshold accelerates the deviations. As the deviation
grows, the coupling whose strength is proportional to the
amount of the deviation becomes more effective. Then, due
to the repulsive force of the mutual inhibitory intergroup
coupling, the neurons of the leading group are repelled over
the threshold and are able to fire. These firings of the neurons
of the leading group occur synchronously due to the excita-
tory intragroup coupling.
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Meanwhile, the lagging groups of neurons, corresponding 0.8 . . .
to the other patterns, are repelled to the resting state due to %Z %:2 e
the strong inhibition by the leading firing group. Therefore, y=%.g =
Y=2.5 »—

desynchrony of the different patterns is achieved. Similarly, 0.6 |
at the next peak time of the periodic forcing, another pattern
among the input mixture will be selected as a leading group,
and the neurons of the group will begin to fire synchro-
nously. This explains the acting mechanism of the pattern
selection and the segmentation of the proposed oscillator net-
work in which the inhibitory coupling induces intergroup
desynchrony, whereas the excitatory coupling maintains the
intragroup synchrony. However, some neurons of the se-
lected leading group may not be excited enough, and hence
fail to fire in concert with other neurons of the group unless a

the excitatory intragroup coupling is strong enough, which log (B)
leads to an incomplete segmentation of the corresponding
pattern. Therefore, even though the inhibitory intergroupten
coupling is essential in segmenting out different patterns, the

excitatory intragroup coupling is also important for a reliableg.qm the two coupled oscillators, one may expect that the

performance of the network. _ _ optimal performance of the network occurs at a rather low
Itis also to be noted that there exist overlappings betweefye| of the noise intensity, where the inhibitory intergroup
stored patterns. For example, nodg appears in both pat- o, hjing establishes strong desynchrony among different
temnsS, andS;. Thus this node participates both in the syn-pattemns and also induces an enhancement of the SNR, as
chronous firings of patterngl,2,3,4 and{1,59,13 when  Fjg 10 shows. The enhanced SNR increases the cross corre-
the network is in the course of re_trlgvmg the stored P‘"?‘ttem?ation among neurons belonging to the same patterns, which
S, andS; out of the inputM,. This implies that the firing  |eads to an enhanced intragroup synchrony as well. Simi-
rates of all neurons are not necessarily the same. That Ifarly, the shift of the peaks to the lower level of the noise
those neurons belonging to more than one pattern may havgiensity can be understood from the peak shift of the anti-
a higher firing rate than neurons belonging only to a singlggrelation curves, as shown in Figlh From these obser-
pattern. . vations we realize that inhibitory intergroup coupling plays a
The degree of the temporal segmentatitre temporal  cycial role for the optimal performance of the STONN, es-

segmentation ratio R, is measured by counting the num- pecially in the regime of the weak noise intensity.
ber of instances of the complete successful segmentation and

dividing it by the elapsed periods in unit. The temporal
segmentation ratio depends crucially both on the noise inten-
sity D and the coupling strength, since these quantities influ- In the present work a stochastic oscillator neural network
ence the firing rate and the cross correlations of the couplellas been proposed for the task of the segmentation of super-
oscillators, as predicted from the detailed studies shown ifmposed patterns. Hopfield-type memory is employed by im-
the preceding sections. In Fig. 10, we plot the segmentatioposing an excitatory intragroup coupling between neurons
ratio as a function of the noise intensity for various magni-belonging to the same patterns, and an inhibitory intergroup
tudes of the coupling strength. At either lower or highercoupling between neurons belonging to different patterns.
noise intensities, the segmentation ratio is small since th&he coupling is given such that the excitatory intragroup
SNR retains low values at these regimes, as implied by theoupling induces intragroup synchrony, whereas the inhibi-
two coupled oscillator cases. Optimal performance is attory intergroup coupling induces intergroup desynchrony.
tained at an intermediate noise intensity. Therefore, the overFhat is, such temporal correlations present in the neuronal
all appearance of the graphs resembles the SNR curve of Figctivities provide a working mechanism for the desired tem-
4, poral segmentation in the proposed model.

We also note from Fig. 10 that optimal segmentation per- It has been observed that the network, exploiting temporal
formance occurs at a much lower level of the noise intensitydynamics of the coupled stochastic nonlinear oscillators, is
than Dy~0.1, which is the optimal noise intensity for the capable of segmenting hidden constituent patterns out of an
peak of the SNR. Optimal segmentation performance isnput pattern which is an overlapped superimposition of sev-
achieved when both synchrony among the intragroup neweral stored patterns. The performance for the temporal seg-
rons and desynchrony among the intergroup neurons amgentation, as measured by the temporal segmentation ratio,
strong, and also when a high level of the SNR is maintaineds examined in a systematic way, and is shown to vary with
at the same time. In fact, from the detailed behavior of theghe noise intensity and coupling strength as well. The net-
two coupled oscillators, as shown in Sec. Ill, we realize thatvork, for a given coupling strength, reveals the optimal per-
the peak of the anticorrelation occurs at a much lower leveformance at an intermediate level of the noise intensity,
of the noise intensity in the presence of the inhibitory cou-which is reminiscent of the stochastic resonance previously
pling, as shown in Fig. @®). Furthermore, the inhibitory cou- observed in the coupled oscillator netwofB&]. As the cou-
pling also enhances the SNR at the weak noise intensity, gding strength increases, the performance becomes improved
shown in Fig. 4b). Therefore, according to the observationsin general, and the level of noise intensity for the optimal

0.4

R seg

0.2

AF @
'
w
'
N
'
-

FIG. 10. Segmentation ratiBs.qas a function of the noise in-
sity for various magnitudes of the coupling strength.

VI. CONCLUSIONS AND DISCUSSION
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performance peak shifts to the lower value of the noise ineven though this result is not directly related to the present
tensity. This implies that a strongly coupled network canresults since the proposed STONN utilizes the different
perform the segmentation task optimally with the aid of amechanism of the temporal segmentation in the subthreshold
relatively weak noise. regime. Furthermore, we also observe that the STONN in the
We realize that the inhibitory coupling plays a crucial role subthreshold regime is capable of segmenting out larger
in carrying out the temporal segmentation in the proposediumbers of superimposed patterug to eighf, which im-
model. As shown through detailed examinations on the twalies that the limitation observed in the previous studies may
coupled oscillators in Sec. lll, the inhibitory coupling en- not apply to the present approach.
hances the SNR as well as the anticorrelation between oscil- Another feature of the proposed model is the periodic
lations. These are directly related to the high firing rate andlriving force. The role of the periodic forcing is to generate
the strong desynchrony among different groups of patternsscillations out of the one-dimensional overdamped oscilla-
for the oscillator network, both of which are essential re-tor. Consequently, it provides a natural period for the desired
quirements for an optimal performance of the network. temporal pattern segmentation. A more important role of the
Throughout the present work we have used, as inpuperiodic forcing might be that it effectively resets the phases
stimuli, the subthreshold driving force and noise, whichof all firing nodes of nonzero input at each minimum of the
makes the segmentation mechanism quite different from preperiodic forcing, which gives the overlapped nodes more
vious attemptg10-12. That is, the segmentation task is chances to fire along with the patterns which they belong to;
carried out in the STONN when each pattern is selected t¢he firing rate of the overlapped nodes should be higher for
fall into the firing state one after another by noise, while thethe desirable performance, as pointed out in Sec. V.
other patterns not selected at a moment remain in the resting Even though there is not yet clear evidence, some impli-
state; in the previous models, all pattern activities maintaircations regarding the biological relevance of the stochastic
oscillatory states with phase shifts among them, and such @sonance have been reported, as mentioned in Sec. |, which
train of the staggered oscillations is regarded as the desiradake it plausible that the present study may provide a useful
segmentation. If suprathreshold stimuli are applied to thevay to understand information processing in biological ner-
STONN, the resulting behavior would become similar tovous systems. The performance of the stochastic oscillator
what was observed in the previous studies. That is, in thiseural network might be further improved by employing rel-
case the neurons receiving inputs are in oscillatory stategvant perceptual processes such as selective att¢B6hrit
and the deterministic nature will dominate the dynamics ofwill be also interesting to identify the roles of periodic forc-
the coupled oscillations of the patterns, which will in turn ing and noise in the course of information processing in bio-
determine the performance of the segmentation. Then, dsgical nervous systems related to the present attempts.
pointed out in Ref[14] for deterministic systems, the seg-
mentation _perfo_rmanc_e is I|m|t_ed W|Fh!n a few numbe_rs of ACKNOWLEDGMENTS
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