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Temporal segmentation of the stochastic oscillator neural network
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We propose a stochastic oscillator neural network model of the Hopfield-type memory for pattern segmen-
tation tasks exploiting temporal dynamics of stochastic nonlinear oscillators. The nonlinear oscillators in the
model are driven by subthreshold periodic force and noise. For an input pattern which is an overlapped
superposition of several stored patterns, it is shown that the proposed model network is capable of segmenting
out each pattern one after another as synchronous firings of a group of neurons. A systematic study of the
dependence on the model parameters shows that the temporal segmentation attains its optimal performance at
an intermediate noise intensity, which is reminiscent of the stochastic resonance observed in the coupled
oscillator networks. It is also shown that the inhibitory coupling between oscillator groups representing dif-
ferent patterns plays an important role in that it enhances both the firing rate and the intergroup desynchrony
that are essential requirements for the optimal performance of the temporal segmentation.
@S1063-651X~98!06808-1#

PACS number~s!: 84.35.1i, 02.50.Ey, 05.40.1j, 82.40.Bj
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I. INTRODUCTION

Recently, electrophysiological experiments on the vis
cortex of a cat have revealed the presence of oscilla
rhythms in the measurement of the local field potential up
the presentation of moving visual stimuli@1,2#. The observa-
tion of a 40–60-Hz synchronous oscillation among neur
that are widely separated over the visual cortex has s
ported the idea that temporal correlation among the neu
is the working mechanism for the feature binding@3,4#. The
processes of perception—like the figure-background sep
tion, the object recognition, and the separation of disti
objects—are all based on the feature binding mechan
Recent studies on the functional role of the nervous sys
have concentrated on the dynamic behavior of the nerv
system@4–6#.

Motivated by physiological evidence of synchronous o
cillations as the means of the feature binding, a new
proach using the associative oscillator neural network
been proposed to resolve the so-called superposition c
trophe problem@7#. That is, when an input corresponding
a superposition of several stored patterns is presented
conventional associative neural networks whose performa
is based on fixed-point dynamics@8,9#, it is viewed as a new
pattern that has not been stored. Therefore, the networ
not able to retrieve information for the hidden compone
patterns. Meanwhile, in the associative oscillator netw
each component pattern pops out as a synchronous firing
subgroup of neurons, and the different patterns are dis
guished by the different temporal activities of the subgrou
which is the main idea of the temporal segmentation sche
Therefore, the oscillatory network is shown to be capable
avoiding the superposition catastrophe problem. Since t
various models using the oscillatory neural networks h
been attempted for the temporal segmentation tasks.

In Refs. @10,11#, the dynamic threshold in the Hopfiel
neural network was incorporated to obtain an oscillat
neural network, and in Refs.@12,13# an oscillator network
PRE 581063-651X/98/58~2!/2325~10!/$15.00
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was constructed using oscillator units, each of which is
feedback loop of the excitatory and inhibitory cells. The
models have been shown to exhibit the capability to retrie
component patterns for a small number of the superimpo
input patterns, which is achieved in a rather brief period.
considered in Ref.@14#, however, the deterministic oscillato
models previously employed have an inherent limitation
the capacity of the temporal segmentation. That is, as
number of the superimposed patterns increases, the net
often falls into partially segmented states that correspon
occurrences of the fusion of several component patterns.
effect of noisy inputs on segmentation was also examin
and it was reported that noise in some cases can enhanc
performance@15#, even though it is not sufficient to remov
the basic limitation.

On the other hand, it was recently observed that noise
play a supportive role, counterintuitively, in detecting we
signals. That is, when a weak periodic force is applied t
nonlinear system with a threshold, the signal-to-noise ra
shows an optimal peak at an intermediate level of the no
intensity. This phenomenon has been referred to as ‘‘stoc
tic resonance’’ in the literature@16#. Since its introduction in
explaining the periodicity of the Earth’s Ice Ages@17#, sto-
chastic resonance has been studied in a variety of cont
including ring lasers@18#, the electronic circuit@19–21#, and
sensory neuronal systems@22–24#. Recently, it was also
demonstrated through a psychophysical experiment that
chastic resonance can be used as a quantitative measu
the efficiency with which the visual system processes no
information @25#.

In the present work, motivated by observations of the
tive role of noise, we propose an oscillator neural netwo
model of Hopfield-type memory for pattern segmentati
tasks which exploit temporal dynamics of stochastic non
ear oscillators; the stochastic oscillator neural network p
posed will hereafter be abbreviated as STONN. The p
posed model is different from previous oscillator netwo
models @10–12,14# in that the nonlinear oscillators of th
2325 © 1998 The American Physical Society
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network are driven by the subthreshold periodic force a
noise, which leads to a segmentation mechanism diffe
from the previous attempts. That is, the segmentation tas
carried out in the STONN when each pattern is selected
fall into the firing state one after another by noise, while t
other patterns not selected at a moment remain in the res
state. In Refs.@10–12,14#, all pattern activities maintain os
cillatory states with phase shifts among them, and suc
train of the staggered oscillations is regarded as the des
segmentation. We expect that the proposed model, inco
rating an active role of noise, may provide an alternat
approach of constructing associative memories for the t
poral segmentation tasks.

In the following it is shown that the proposed model n
work has the capability of temporal segmentation. A syste
atic study of the dependence of the performance on
model parameters shows that the performance of the
posed model attains its optimal value at an intermediate le
of the noise intensity, which is reminiscent of the stochas
resonance observed in the coupled oscillator networks@26#.
This paper is organized as follows. In Sec. II, we introduc
stochastic one-dimensional nonlinear oscillator as a sim
fied neuron model. In Sec. III, the effects of noise as well
coupling between oscillations are examined in detail with
simplest example of two coupled oscillators. It is shown t
the inhibitory coupling between oscillators plays a distinct
role which turns out to be very essential for the optim
performance of the proposed network model. The STONN
constructed, using the Hopfield-type memory, in Sec.
The performance of the network for the memory retrieva
also examined. In Sec. V, the performance of the propo
network for the temporal segmentation is examined for v
ous ranges of the noise intensity as well as the coup
strength, and explanations for such behavior of the netw
are attempted based on the observations from the
coupled oscillators. Finally, in Sec. VI we make conclusio
with discussion.

II. STOCHASTIC NONLINEAR OSCILLATOR

In the presence of a sufficiently strong sinusoidal stim
lus, a neuron can be excited from the stationary resting s
to the oscillatory firing state. In this paper such an activat
of a neuron from the resting state to the firing state is
scribed by a one-dimensional overdamped nonlinear osc
tor, which can be regarded as a further simplified version
the more realistic models such as the Hodgkin-Huxley@27#,
Fitzhugh-Nagumo@28,29#, or Morris-Lecar @30# neuron
models. The simplification to the one-dimensional oscilla
model greatly reduces the computational complexity of
coupled neural oscillators system.

Dynamics of the activation variablex representing the
membrane voltage of a neuron is governed by the ordin
differential equation

dx

dt
52

dU~x!

dx
1I ~ t !1A2Dj, ~1!

where the potential is given asU(x)521/2x211/4x4. As
shown in Fig. 1, the potential has a threshold atxc50, which
denotes the crossover from the resting state to the firing s
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of the neuron. That is, the neuron is regarded as being in
resting state whenx,0, and in the firing state whenx.0.
For a real neuron the firing state usually lasts for only a b
period, and is followed by the deactivation process, restor
the membrane potential back to the resting state. T
mechanism of deactivation is introduced in our model
holding the activation variablex for a brief time delay, and
then resetting it tox5x0 wheneverx reaches a prescribe
value xm ; xm and x0 indicated in the figure can be chose
arbitrarily, since their precise values do not lead to an app
ciable change in the results. We setxm50.9 andx0522.0 in
the present work.

A periodic driving forceI (t)5I 0sin(v0t), with v050.1,
represents an input stimulus. When the strength of stimu
I 0 is larger than the threshold valueI th;0.42, the model
neuron exhibits sustained periodic firings. When the in
stimulus is weak below the threshold value,x cannot reach
the firing state and just wobbles around the resting state
the present work, if not specified, the input stimulus is
sumed to be in the subthreshold regime,I 050.36, so that it
does not excite the neuron by itself. However, in the pr
ence of noise, as added in the last term of Eq.~1!, the model
neuron can be driven to the firing regime even with the s
threshold stimuli, which is the main phenomenon exploit
in the present work.D is the noise intensity, and the rando
white noisej is defined as

^j~ t !&50, ^j~ t !j~ t8!&5d t,t8 . ~2!

However, the firing events are only rare when the no
intensityD is rather small. The firing occurs more frequent
as the level of the noise intensity becomes higher. When
noise level is too high, however, the occurrence of the firin
becomes noisy; that is, most firings become incoherent w
the driving forceI (t). Therefore, the coherent firing of th
neuron is a cooperative behavior between noise and the d
ing force. That is, whenever the periodic driving force is
its peak value, the neuron has a chance to fire through
additional forcing provided by noise. Figure 2 shows t
power spectral densityP(v) of the output signalx(t), which
displaysd peaks at the frequencyv0 of the driving forcing
and also at its harmonics. The stochastic resonance is m
fested by the signal-to-noise ratio~SNR! of x(t), which is
the logarithm of the ratio of the power spectral dens
P(v0) to the background noise intensity@18#. The inset of

FIG. 1. Double well potential of the oscillator in Eq.~1!.
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the figure shows the SNR as a function of the noise inten
D. As shown in the figure, the SNR peak occurs at the no
intensity D5D0;0.1. The appearance of the SNR peak
an intermediate noise intensity is a universal behavior
nonlinear systems, with the threshold dynamics like the
of the present neuron model@16,17,19–24#.

III. TWO COUPLED OSCILLATORS

Before examining the more complex behavior of the
cillator networks, let us first consider the simplest case
two coupled stochastic oscillators. The system is descri
by the following coupled differential equations:

dx1

dt
52

dU~x1!

dx1
1I 1~ t !1A2Dj11g1~x22x1!,

~3!

dx2

dt
52

dU~x2!

dx2
1I 2~ t !1A2Dj21g2~x12x2!,

where the white noisesj1 and j2 of each oscillator are un
correlated, that is,̂j1(t)j2(t8)&50. The input currentsI 1(t)
and I 2(t) are set to be identical. The coupling constantsg1
andg2 can be either positive or negative; the attractive fo
(g.0) and the repulsive force (g,0) typically lead to an
excitatory and an inhibitory coupling, respectively. To u
derstand the cooperative behavior between two oscillat
under couplings of different nature, in the following we co
sider two cases:~a! the mutual excitatory couplingg15g2
5g.0, and~b! the mutual inhibitory couplingg15g25g
,0.

In Figs. 3, temporal activities of the two oscillators a
shown for each case of coupling. In each figure, the fir
events of the oscillators are depicted in the upper two pl
The sinusoidal graph at the bottom denotes the common
riodic driving force. The long vertical line across the grap
denotes the moment when the coupling is turned on. As
can see from these figures, two oscillations are strongly s
chronized for the excitatory coupling case@Fig. 3~a!#, and
strongly desynchronized for the inhibitory coupling ca
@Fig. 3~b!#, as soon as the coupling is turned on. That is,
excitatory coupling typically induces synchrony between t

FIG. 2. Power spectral densityP(v) for x(t) at D50.1. The
inset shows the SNR as a function ofD.
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oscillations, whereas the inhibitory coupling induces des
chrony. One may also notice a certain amount of synchr
present even before the coupling is turned on, which is o
due to the common driving force.

To see the firing response of the coupled oscillators
noise, the SNR for each coupling case has been estima
The SNR varies depending on the coupling strength as w
as the noise intensity, as shown in Fig. 4. For the excitat
coupling case, as shown in Fig. 4~a!, the SNR at weaker
noise intensities (D,D0) is reduced, whereas it is enhance
at larger noise intensities (D.D0) when compared to the
single uncoupled oscillator case. This is due to the attrac
force between two phases of oscillations, originating fro
the nature of the excitatory coupling. Enhancement of
SNR due to the excitatory coupling was previously repor
for coupled oscillator systems@26,31,32#.

The mechanism for the coupling dependence of the S
can be viewed at the level of the neuronal activity as follow
The excitatory coupling tends to reduce the phase differe
of the two oscillators. At a weak noise intensity, both osc
lators have less chance of firings, and hence it is more lik

FIG. 3. Temporal activities of two coupled oscillators. The co
mon sinusoidal forcing is depicted at the bottom of the plots. T
long vertical bar across the graphs denotes the moment when
coupling is turned on.~a! The excitatory coupling (g50.3, D
50.02). ~b! The inhibitory coupling case (g520.3, D50.004).
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that they are in a resting state. Suppose now that the pha
one oscillator manages to get closer to the threshold an
ready to fire. The oscillator would fire only if a sufficientl
strong noise kick occurs on it. However, the amount of no
should be larger than the uncoupled oscillator case, since
oscillator, now coupled, should overcome the attraction fr
the other oscillator at the resting state in addition to the p
ing force by the nonlinear potentialU(x). Therefore, it is
more likely that the firing of the oscillator is suppressed a
consequently, the firing rate is reduced compared to
single oscillator case. Furthermore, this effect is eviden
enhanced as the coupling becomes stronger. On the o
hand, when the noise intensity is large (D.D0), both oscil-
lators have more chance to be in the firing state. Even w
one oscillator is in the resting state, the other oscillator in
firing state attracts the oscillator and helps firing. Con
quently, the SNR will be enhanced, and this effect also
comes enhanced as the coupling is stronger.

A quite different mechanism applies to the inhibitory co
pling case, since the nature of the coupling now introduce
repulsive force instead of an attractive force@see Fig. 4~b!#.
It is noticeable that the change of the SNR for the inhibito
coupling case is much more prominent, especially in
weak noise regime, compared to the excitatory coupl
case. This results mainly from the nature of inhibitory co
pling that enhances the coupling strength effectively. Tha

FIG. 4. SNR for two coupled oscillators with respect to t
noise intensity for various magnitudes of the coupling strength:~a!
the excitatory coupling and~b! the inhibitory coupling cases.
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with excitatory coupling a small deviation of two oscillatin
phases tends to decrease, and the effective coupling betw
two oscillators becomes smaller as a result. Meanwhile,
deviation tends to increase for the inhibitory coupling ca
due to the repulsive force and, therefore, the effective c
pling becomes larger. The increase of the effective coup
strength for the inhibitory coupling case can thus lead t
nontrivial result in the coupled oscillations, unlike for th
excitatory coupling case.

Besides the noise and the driving force, the effective fo
between the coupled oscillations comes from the combi
effect of the potentialU(x) and the coupling. Near the lef
minimum of the potential~the resting state! the potential
gradient tends to synchronize the oscillations, while it ten
to desynchronize the oscillations near the threshold beca
of the reversed curvature of the potential. Therefore, in
simplified picture, one may describe a typical firing of osc
lators with inhibitory coupling by the following three step
~1! a periodic approach of both oscillators to the thresh
driven by input force,~2! a small deviation in phase due t
noise, and then~3! a mutual repulsion of the phases due
the combined effect of the potential gradient and the inh
tory coupling. In step~2!, the order of the phases is random
given by noise, and the oscillator of the advanced phase
be finally led to fire by the repulsive force of step~3!,
whereas the other oscillator of the lagged phase is pus
back to the resting state. A more detailed analysis of
combined effect of the potential and the coupling will b
given elsewhere@33#.

The observation of the enhanced SNR at the weak n
intensity due to the inhibitory coupling is very important fo
the purpose of the segmentation performance of the osc
tor network, since this implies an increased average fir
rate of neurons, as will be shown in the following section
However, since our purpose for using the coupled osci
tions is their temporal activities, the desired performance
the oscillator network should also rely on the degree of ph
correlations of coupled oscillators as well.

The degree of coherency between two oscillations is m
sured by cross correlations defined as

C5
1

N (
k51

k5N

b1~kT!`b2~kT!,

~4!

CA5
1

N (
k51

k5N

b1~kT! % b2~kT!

whereT is the period of the input forcing,T52p/v0, andbi
is the binary representation of the activation variable;bi50
for x,0 andbi51 for x.0. bi(kT) is measured at thekth
peak of the input forcing within the time window of finit
width d centered around the peak. The operations` and %

denote the binary operations ‘‘AND’’ and ‘‘Exclusive OR,’
respectively. The degree of correlation is estimated us
both measures, since either measure alone does not pro
estimate two kinds of correlations of interest, synchrony a
desynchrony, simultaneously over a wide range of the no
intensity. The cross correlationC measures the degree o
synchrony, i.e., the occurrences of synchronous firings
two oscillators at the peaks of the input forcing, while t
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anticorrelationCA measures the degree of desynchrony. N
that two measures are independent by definition, and tha
proposed definitions are different from the conventio
ones. However, it is expected that these measures are
natural for the present purpose in that they measure cor
tions of the firing events only at the input forcing periods.
will be seen in the following sections, the desired tempo
segmentation is also performed naturally at the input forc
periods in the parameter range of present interest.

Figure 5 shows that correlations between the two osc
tions vary depending on the noise intensity as well as
coupling strength. When the noise intensity is sufficien
weak, the oscillators hardly fire, and hence the correlati
are almost zero. As the noise intensity increases, firings
to occur and the magnitudes of both correlations rise du
the coupling between two oscillations. Note that the effec
the inhibitory coupling is more prominent compared to th
of the excitatory coupling, especially in the weak noise
gime. The inhibitory coupling induces strong anticorrelati
at a much lower level of the noise intensity. This is,
pointed out above, due to the fact that repulsion of osci
tions originating from the inhibitory coupling becomes e
larged at the weak noise level belowD0. Note also that the
anticorrelation attains its maximal value at a noise inten
which is much lower compared to the peak position of

FIG. 5. Cross correlations between two coupled oscillatio
with respect to the noise intensity for various magnitudes of
coupling strength:~a! the cross correlationC and ~b! the cross
anticorrelationCA .
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SNR curve. It is also observed that the peak shifts to a lo
level of noise intensity as the coupling strength increas
which implies the important role of the inhibitory coupling
the low level of the noise intensity.

As the noise intensity becomes too strong beyondD0, the
magnitude of the cross correlations becomes small, since
firing of each oscillator is now dominated by the uncorr
lated noisesj1 and j2, and thereby the firings of the two
oscillators start to be uncorrelated. In fact, this behavior
the high noise level is not reflected properly by the pres
definition of the cross correlation@Fig. 5~a!#, which is sup-
posed to be saturated at the higher level of noise intens
That is, as the noise intensity increases, the oscillators
to fire at most of the input forcing periods, and this will
turn make the cross correlation saturate even though fir
in the whole time range are uncorrelated on average. H
ever, this should not lead to confusion, since this behav
can be correctly recognized from the SNR data. Therefore
understand more properly the cooperative behavior of
coupled oscillations, it is necessary to examine both m
sures of the SNR and the cross correlations.

In summary, the excitatory~inhibitory! coupling induces
synchrony~desynchrony! between stochastic nonlinear osc
lators. But, unlike the deterministic case, the degree of c
relation depends on the noise intensity as well as on
coupling strength. Also, the firing rate of the coupled osc
lator, the SNR, shows a strong dependence on both qu
ties. In particular, the effect of the inhibitory coupling
prominent at the lower level of noise intensity. As will b
seen in the following sections, this feature of the inhibito
coupling plays an important role in accomplishing the d
sired temporal segmentation.

IV. STOCHASTIC OSCILLATOR NEURAL NETWORK

In Sec. III, we studied the various effects of noise a
coupling on the stochastic nonlinear oscillators. In this s
tion, using these oscillators, we construct an oscillator ne
network of the Hopfield-type associative memory@8#, and
also examine its performance for the memory associa
before we proceed to apply it to the temporal segmenta
tasks. The Hopfield-type neural network storingQ patterns
zp, p51;Q, is described by the coupled differential equ
tions

dxi

dt
52

dU

dxi
1A2Dj i1I i~ t !1

g

N21(i j Wi j ~xj2xi !,

~5!

i , j 51, . . . ,N,

whereN is the number of the oscillator nodes, andWi j is the
weight of coupling between nodesi and j . The coupling
configuration is given via Hebb’s rule@34#,

Wi j 5 (
p51

Q

~z i
p2ap!~z j

p2ap!, ~6!

whereap5^z i
p&, averaged over all nodes. Note that under

rule given by Eq.~6! the intragroup coupling between node
within a group representing a same pattern is given as e

s
e
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FIG. 6. ~a! Stored patterns for the associative memory.~b! Test input patterns that are incomplete but close to the stored patternS1 with
one wrong node: either an additional firing node (A1) or a missing node (A2). ~c! Trial input pattern which is an overlapped superpositi
of all stored patterns. The filled box denotes the firing node and the empty box denotes the resting node.
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tatory and the intergroup coupling between nodes belong
to different patterns is given as inhibitory.

For the purpose of demonstration, we consider a sim
network example consisting of 434 oscillator nodes. There
fore, patternszp are represented by 434 binary data. An
input pattern is given to the network by applying the su
threshold periodic forceI (t) to the corresponding nodes
Four patterns shown in Fig. 6~a! are stored in the memory
The filled box denotes a firing node~1!, and the empty box
denotes a node in the resting state~0! in the figure. Note that
the nodes are labeled using numbers 1,2, . . . ,16.

To examine the association performance of the netwo
we use two test patternsA1 andA2 shown in Fig. 6~b!, which
coincide with the stored patternS1 except for one wrong
node. As an associative memory we expect the network t
able to retrieve the correct patternS1. In the absence of cou
pling the oscillator nodes receiving inputs fire just in an u
correlated fashion as depicted in Fig. 7 during the ear
time lapse. However, as the coupling is turned on at
moment denoted by a long vertical line in the figure, all fo
nodes belonging toS1 fire in a synchronized fashion, whic
is due to both the excitatory intragroup coupling between
nodes ofS1 and the inhibitory intergroup coupling betwee
nodes ofS1 and the others. The retrieval ofS1 is evidently
successful except for some occasional failures on the ex
sive wrong node@Fig. 7~a!#. One may also note that retrieva
is achieved within only a few periods of the driving force,
that the transient period is almost unnoticeable. The oc
rence of the wrong recalls originates from the stochastic
ture of the network, and the frequency of the wrong reca
varies depending both on the coupling strength and the n
intensity.

The association ratioRassomeasures the association pe
formance of the network, and is defined as the averaged
of the number of the successful memory retrieval to the nu
ber of the input peaks. Figure 8 shows the association r
as a function of the coupling strength for both input patte
A1 andA2. As can be seen from the figure, the ratio increa
g
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rapidly as the coupling strength increases. Such a tenden
expected because an increment of the coupling strengg
increases both the excitatory coupling and the inhibitory c
pling between nodes. And, in turn, the increase of the ex
tatory coupling will enhance synchrony among nodes
longing to the same patterns, and the increased inhibi
will enhance desynchrony between nodes belonging to
ferent patterns.

From Fig. 8 one may also note that a stronger coupling
required in retrieving the stored pattern for the wrong inp
with missing firing nodes (A2) than for the one with exces
sive firing nodes (A1). For patternA1, the suppression of the
excessive node$16% is achieved mainly through the inhibi
tory coupling with the firing nodes$1,2,3,4%. For A2, how-
ever, the firing of the missing node$4% is encouraged by
excitatory coupling with nodes$1,2,3%. As pointed out in
Sec. III, the inhibitory coupling has a mechanism that lea
to larger effective coupling. This is why the association c
be carried out at a lower coupling strength forA1, where the
inhibitory coupling plays its role.

V. TEMPORAL SEGMENTATION

Now, using the STONN proposed in Sec. IV, we exami
the performance of the network for the task of the tempo
segmentation. That is, the segmentation into the constitu
patterns is attempted for the input patternM4, as shown in
Fig. 6~c!, which is an overlapped superposition of the fo
stored patternsS1–S4.

In Fig. 9, the temporal behavior of the network is pr
sented. The plot shows that nodes$1,2,3,4% are selected first,
and fire synchronously at the first peak time of the drivi
force, which leads to a successful segmentation of patternS1.
At the next peak, patternS2 is now segmented. One ma
note, however, that the network selects and segments ou
component patterns one after another in a random way
evolves its temporal dynamics. The figure also shows t
the identification of a pattern may not be always success
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as such instances are denoted by the symbolX at the bottom
of the figure. For example, at the fourth peak of the forcin
nodes$1,2,4,5,9,13% fire, which does not coincide with an
stored patterns. One may regard the pattern of those fi

FIG. 7. Associative memory retrieval against the wrong inp
patterns:~a! for A1 with one additional wrong node$16% at g
50.9 andD50.006, and~b! for A2 with one missing node$4% at
g53.0 andD50.006. The long vertical line across the graphs d
notes the moment when the coupling is turned on. Only the rele
nodes$1,2,3,4,16% are shown.

FIG. 8. Association ratioRasso as a function of the coupling
strength at a fixed noise intensityD50.006 for the input patterns
A1 andA2 of Fig. 6~b!.
,

g

nodes as an incomplete segmentation ofS3 with noise at
nodes$2,4%. In fact, nodes$2,4% belong to patternS1, and
these nodes are coupled with the nodes ofS3 via the inhibi-
tory intergroup coupling since they belong to the differe
patterns. Therefore, it is likely that firing of nodes$2,4% will
be suppressed by the firing of nodes$1,5,9,13% as the input
forcing evolves. At the next peak of forcing, as one c
observe from the figure, the network now selectsS3 success-
fully, and only nodes$1,5,9,13% fire synchronously. How-
ever, such a decision for the next selection following an
complete segmentation is not made in a deterministic w
again due to the random nature of the pattern selection;
example, see the segmentation failure at the tenth peak
lowed byS3 selection.

The mechanism of the temporal segmentation with
random nature of the pattern selection is explained in
following. For the input patternM4, those neurons receiving
zero input remain in the resting state. Meanwhile, the n
rons receiving nonzero input signal are driven by a su
threshold periodic force, so that they are periodically driv
together close to the firing threshold. Near the threshold
uncorrelated noises applied to the neurons generate s
deviations in the phase of the neurons. Then a leading gr
of neurons of advanced phases is selected by chance
according to the procedure explained in Sec. III for an
hibitorily coupled system, the effective repulsive force ne
the threshold accelerates the deviations. As the devia
grows, the coupling whose strength is proportional to t
amount of the deviation becomes more effective. Then, d
to the repulsive force of the mutual inhibitory intergrou
coupling, the neurons of the leading group are repelled o
the threshold and are able to fire. These firings of the neur
of the leading group occur synchronously due to the exc
tory intragroup coupling.

t

-
nt

FIG. 9. Temporal segmentation of the oscillatory network f
the patternM4 which is an overlapped superposition of all store
patternsS1;S4. The parameters are chosen for the presentat
purpose:g52.0 andD50.001. The firing activities of all 16 nodes
are depicted with an increasing order from the top together with
common sinusoidal forcing at the bottom. The instances of the s
cessful segmentation are denoted byO, and the occasional failures
by X at the bottom of the plot.
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Meanwhile, the lagging groups of neurons, correspond
to the other patterns, are repelled to the resting state du
the strong inhibition by the leading firing group. Therefo
desynchrony of the different patterns is achieved. Simila
at the next peak time of the periodic forcing, another patt
among the input mixture will be selected as a leading gro
and the neurons of the group will begin to fire synch
nously. This explains the acting mechanism of the patt
selection and the segmentation of the proposed oscillator
work in which the inhibitory coupling induces intergrou
desynchrony, whereas the excitatory coupling maintains
intragroup synchrony. However, some neurons of the
lected leading group may not be excited enough, and he
fail to fire in concert with other neurons of the group unle
the excitatory intragroup coupling is strong enough, wh
leads to an incomplete segmentation of the correspon
pattern. Therefore, even though the inhibitory intergro
coupling is essential in segmenting out different patterns,
excitatory intragroup coupling is also important for a reliab
performance of the network.

It is also to be noted that there exist overlappings betw
stored patterns. For example, node$1% appears in both pat
ternsS1 andS3. Thus this node participates both in the sy
chronous firings of patterns$1,2,3,4% and $1,5,9,13% when
the network is in the course of retrieving the stored patte
S1 and S3 out of the inputM4. This implies that the firing
rates of all neurons are not necessarily the same. Tha
those neurons belonging to more than one pattern may h
a higher firing rate than neurons belonging only to a sin
pattern.

The degree of the temporal segmentation,the temporal
segmentation ratio Rseg, is measured by counting the num
ber of instances of the complete successful segmentation
dividing it by the elapsed periods in unitT. The temporal
segmentation ratio depends crucially both on the noise in
sity D and the coupling strength, since these quantities in
ence the firing rate and the cross correlations of the cou
oscillators, as predicted from the detailed studies shown
the preceding sections. In Fig. 10, we plot the segmenta
ratio as a function of the noise intensity for various mag
tudes of the coupling strength. At either lower or high
noise intensities, the segmentation ratio is small since
SNR retains low values at these regimes, as implied by
two coupled oscillator cases. Optimal performance is
tained at an intermediate noise intensity. Therefore, the o
all appearance of the graphs resembles the SNR curve of
4.

We also note from Fig. 10 that optimal segmentation p
formance occurs at a much lower level of the noise inten
than D0;0.1, which is the optimal noise intensity for th
peak of the SNR. Optimal segmentation performance
achieved when both synchrony among the intragroup n
rons and desynchrony among the intergroup neurons
strong, and also when a high level of the SNR is maintain
at the same time. In fact, from the detailed behavior of
two coupled oscillators, as shown in Sec. III, we realize t
the peak of the anticorrelation occurs at a much lower le
of the noise intensity in the presence of the inhibitory co
pling, as shown in Fig. 5~b!. Furthermore, the inhibitory cou
pling also enhances the SNR at the weak noise intensity
shown in Fig. 4~b!. Therefore, according to the observatio
g
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from the two coupled oscillators, one may expect that
optimal performance of the network occurs at a rather l
level of the noise intensity, where the inhibitory intergrou
coupling establishes strong desynchrony among differ
patterns and also induces an enhancement of the SNR
Fig. 10 shows. The enhanced SNR increases the cross c
lation among neurons belonging to the same patterns, w
leads to an enhanced intragroup synchrony as well. S
larly, the shift of the peaks to the lower level of the noi
intensity can be understood from the peak shift of the a
correlation curves, as shown in Fig. 5~b!. From these obser
vations we realize that inhibitory intergroup coupling plays
crucial role for the optimal performance of the STONN, e
pecially in the regime of the weak noise intensity.

VI. CONCLUSIONS AND DISCUSSION

In the present work a stochastic oscillator neural netw
has been proposed for the task of the segmentation of su
imposed patterns. Hopfield-type memory is employed by
posing an excitatory intragroup coupling between neur
belonging to the same patterns, and an inhibitory intergro
coupling between neurons belonging to different patter
The coupling is given such that the excitatory intragro
coupling induces intragroup synchrony, whereas the inh
tory intergroup coupling induces intergroup desynchro
That is, such temporal correlations present in the neuro
activities provide a working mechanism for the desired te
poral segmentation in the proposed model.

It has been observed that the network, exploiting tempo
dynamics of the coupled stochastic nonlinear oscillators
capable of segmenting hidden constituent patterns out o
input pattern which is an overlapped superimposition of s
eral stored patterns. The performance for the temporal s
mentation, as measured by the temporal segmentation r
is examined in a systematic way, and is shown to vary w
the noise intensity and coupling strength as well. The n
work, for a given coupling strength, reveals the optimal p
formance at an intermediate level of the noise intens
which is reminiscent of the stochastic resonance previou
observed in the coupled oscillator networks@32#. As the cou-
pling strength increases, the performance becomes impro
in general, and the level of noise intensity for the optim

FIG. 10. Segmentation ratioRseg as a function of the noise in
tensity for various magnitudes of the coupling strength.
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performance peak shifts to the lower value of the noise
tensity. This implies that a strongly coupled network c
perform the segmentation task optimally with the aid o
relatively weak noise.

We realize that the inhibitory coupling plays a crucial ro
in carrying out the temporal segmentation in the propo
model. As shown through detailed examinations on the
coupled oscillators in Sec. III, the inhibitory coupling e
hances the SNR as well as the anticorrelation between o
lations. These are directly related to the high firing rate a
the strong desynchrony among different groups of patte
for the oscillator network, both of which are essential
quirements for an optimal performance of the network.

Throughout the present work we have used, as in
stimuli, the subthreshold driving force and noise, whi
makes the segmentation mechanism quite different from
vious attempts@10–12#. That is, the segmentation task
carried out in the STONN when each pattern is selected
fall into the firing state one after another by noise, while t
other patterns not selected at a moment remain in the res
state; in the previous models, all pattern activities maint
oscillatory states with phase shifts among them, and su
train of the staggered oscillations is regarded as the des
segmentation. If suprathreshold stimuli are applied to
STONN, the resulting behavior would become similar
what was observed in the previous studies. That is, in
case the neurons receiving inputs are in oscillatory sta
and the deterministic nature will dominate the dynamics
the coupled oscillations of the patterns, which will in tu
determine the performance of the segmentation. Then
pointed out in Ref.@14# for deterministic systems, the seg
mentation performance is limited within a few numbers
patterns mixed in the input, which originates from the ins
bility of the subharmornic oscillations corresponding to t
fully segmented states. Therefore, we expect that
STONN in the regime of suprathreshold stimuli will be co
fronted with similar limitations, as has also been observed
our simulations with the STONN. In Ref.@15#, the effect of
noise added to inputs for deterministic systems was also
amined, and it has been observed that a noise can facil
the performance for a slightly larger number of patter
e
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even though this result is not directly related to the pres
results since the proposed STONN utilizes the differ
mechanism of the temporal segmentation in the subthres
regime. Furthermore, we also observe that the STONN in
subthreshold regime is capable of segmenting out lar
numbers of superimposed patterns~up to eight!, which im-
plies that the limitation observed in the previous studies m
not apply to the present approach.

Another feature of the proposed model is the perio
driving force. The role of the periodic forcing is to genera
oscillations out of the one-dimensional overdamped osci
tor. Consequently, it provides a natural period for the desi
temporal pattern segmentation. A more important role of
periodic forcing might be that it effectively resets the phas
of all firing nodes of nonzero input at each minimum of t
periodic forcing, which gives the overlapped nodes mo
chances to fire along with the patterns which they belong
the firing rate of the overlapped nodes should be higher
the desirable performance, as pointed out in Sec. V.

Even though there is not yet clear evidence, some im
cations regarding the biological relevance of the stocha
resonance have been reported, as mentioned in Sec. I, w
make it plausible that the present study may provide a us
way to understand information processing in biological n
vous systems. The performance of the stochastic oscill
neural network might be further improved by employing re
evant perceptual processes such as selective attention@35#. It
will be also interesting to identify the roles of periodic for
ing and noise in the course of information processing in b
logical nervous systems related to the present attempts.

ACKNOWLEDGMENTS

The authors would like to thank Professor S. Kim, Dr.
Neiman, Professor L. Schimansky-Geier, Professor F. Mo
and Dr. S. Park for useful discussions. S.K.H. was suppo
by the Basic Science Research Institute Program~Grant No.
BSRI-96-2436!, and by the CTP through the SRC Progra
of the Seoul National University, Korea. H.K. was support
by the Basic Science Research Institute Program~Grant No.
BSRI-96-2438! of the Korean Ministry of Education.
ral

tt.
@1# C. M. Gray, P. Ko¨nig, A. K. Engel, and W. Singer, Natur
~London! 338, 334 ~1989!.

@2# R. Eckhornet al., Biol. Cybern.60, 121 ~1988!.
@3# C. von der Malsburg and W. Schneider, Biol. Cybern.54, 29

~1986!.
@4# H. G. Schuster,Nonlinear Dynamics and Neuronal Network

~VCH, New York, 1991!.
@5# M. A. Arbib, The Handbook of Brain Theory and Neural Ne

works ~MIT Press, Cambridge, MA, 1995!.
@6# C. Koch and I. Segev,Methods in Neuronal Modeling~MIT,

Cambridge, 1989!.
@7# C. von der Malsburg, inBrain Theory, edited by G. Palm and

A. Aertsen~Springer-Verlag, Berlin, 1986!, p. 161.
@8# J. J. Hopfield, Proc. Natl. Acad. Sci. USA79, 2554~1982!.
@9# D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Natu

~London! 323, 533 ~1986!.
@10# D. Horn and M. Usher, Phys. Rev. A40, 1036~1989!.
@11# D. Horn and M. Usher, Neural Comput.3, 31 ~1991!.
@12# D. L. Wang, J. M. Buhmann, and C. von der Malsburg, Neu

Comput.2, 94 ~1990!.
@13# C. von der Malsburg and J. M. Buhmann, Biol. Cybern.67,

233 ~1992!.
@14# D. Horn and I. Opher, Neural Comput.8, 373 ~1996!.
@15# D. Horn and I. Opher, Int. J. Neural Syst.7, 529 ~1996!.
@16# K. Wiesenfeld and F. Moss, Nature~London! 373, 33 ~1995!.
@17# R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A14, L453

~1981!.
@18# B. McNamara, K. Wiesenfeld, and R. Roy, Phys. Rev. Le

60, 2626~1988!.
@19# S. Fauve and F. Heslot, Phys. Lett.97A, 5 ~1983!.
@20# L. Gammaitoniet al., Phys. Rev. Lett.62, 349 ~1989!.
@21# M. Dykmanet al., Phys. Rev. Lett.65, 2606~1990!.



a

F.

d

2334 PRE 58SEUNG KEE HAN, WON SUP KIM, AND HYUNGTAE KOOK
@22# A. Longtin, A. Bulsara, and F. Moss, Phys. Rev. Lett.67, 656
~1991!.

@23# J. K. Douglass, L. Wilkens, E. Pantazelou, and F. Moss, N
ture ~London! 365, 337 ~1993!.

@24# I. Peterson, Science144, 271 ~1993!.
@25# E. Simonotto, M. Riani, C. Seife, M. Roberts, J. Twitty, and

Moss, Phys. Rev. Lett.78, 1186~1997!.
@26# J. F. Linder, B. K. Meadows, W. L. Ditto, M. E. Inchiosa, an

A. R. Bulsara, Phys. Rev. Lett.75, 3 ~1995!.
@27# A. L. Hodgkin and A. F. Huxley, J. Physiol.~London! 117,

117 ~1952!.
@28# R. A. Fitzhugh, Biophys. J.1, 445 ~1961!.
-

@29# J. Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRE50, 2061
~1962!.

@30# C. Morris and H. Lecar, Biophys. J.35, 193 ~1981!.
@31# A. Nieman and L. Schimansky-Geier, Phys. Lett. A197, 379

~1995!.
@32# M. E. Inchiosa and A. R. Bulsara, Phys. Lett. A200, 283

~1995!.
@33# S. K. Han, S. H. Park, W. S. Kim, and H. Kook~unpublished!.
@34# D. O. Hebb,The Organization of Behavior~Wiley, New York,

1949!.
@35# S. K. Han, S. W. Lee, W. S. Kim, and H. Kook~unpublished!.


